Name $\qquad$

1) Solve $4 x=3 \bmod 99$.

Consider the equivalence relation on $\mathbb{R}^{2}$ that identifies points that are the same distance from the origin with each other. For instance, $(5,0),(0,5),(-5,0),(0,-5),(3,4),(4,3),(-3,4)$, among many other points should all be equivalent.

2a) Write down the equivalence relation as a set.

2b) Describe the equivalence relation as an "iff" statement.

2c) Sketch a graph of the equivalence class of $(0,5)$.
3) Consider the following total order relation on $\mathbb{Z}_{\geq 0}$. We're going to split the positive integers into two groups: All even integers come before all odd integers. Within each group, use the standard ordering. For example, if we call this relation " $\preccurlyeq$ " then we see that $2 \preccurlyeq 6,3 \preccurlyeq 5$, and $8 \preccurlyeq 7$.

Provide a sketch a proof that " $\preccurlyeq$ " is a total order relation.

